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On bosonisation in (1 + 1) dimensions 

H Aratyn 
The Niels Bohr Institute, University of Copenhagen DK-2100 Copenhagen 0, Denmark 

Received 8 August 1980, in final form 12 December 1980 

Abstract. In this paper we present the quantum field theory of the free scalar massless field 
and derive on  this basis the operator solution to the Thirring model. The Lorentz and scale 
transformation formulae for the scalar and Thirring fields are found explicitly. It is shown 
that one can attribute definite spin and scale dimension to the Thirring field $ ( x )  only if one 
interprets & ( x )  as an intertwining operator between inequivalent charged sectors. Parti- 
cular attention is paid to the way the two charge operators are contained in the theory of the 
massless scalar field. 

1. Introduction 

The massless Thirring model for interacting relativistic fermions in two-dimensional 
space-time is exactly soluble, and several different approaches to the model have been 
introduced in the past. In 1977 Nakanishi found operator solutions to various two- 
dimensional models (Nakanishi 1977a, 1978) using his own formalism of the two- 
dimensional free massless scalar field (Nakanishi 1977b, 1980). As pointed out by 
Hadjiivanov et a1 (1979) and Hadjiivanov and Stoyanov (1979a) Nakanishi missed the 
second non-zero charge. This was the consequence of the asymptotic completeness of 
the single massless scalar field q5 ( x )  combined with the assumed asymptotic behaviour 

Both Nakanishi (1977b) and Hadjiivanov et a1 (1979) have investigated the 
transformation properties of the Thirring field $ ( x )  under Lorentz transformations. 
Hadjiivanov et a1 (1979) have also studied the transformation properties of $(XI under 
scale transformations. This transformation cannot be introduced in Nakanishi’s 
framework (see § 6 ) .  The transformation laws for the Thirring field obtained by these 
authors are not the standard ones; in particular one cannot assign any spin or scale 
dimension to the field $(x). The reason for this is that the Thirring field acts in the 
indefinite metric space of a free scalar field. The main result of this paper is the 
explanation of how bosonisation in (1 + 1) dimensions is related to the association of a 
spin and scale dimension with the Fermi field. 

It is well known (Nakanishi 1977c, Hadjiivanov and Stoyanov 1979b) that in the 
limit of p+ 0 the Wightman functions define the positive definite two-dimensional 
theory, in which gauge symmetries are restored and the Thirring field acquires fixed spin 
and scale dimension. We state that it is possible to quantise the massless scalar field 
theory in such a way that the Fock representation occurs in the Hilbert space with a 
positive metric. The two charges CP and 6 define superselection sectors and the 
irreducible representations of commutation relations correspond to different charge 
sectors (Ezawa 1979, Streater 1971, 1973, 1974). 

of q5(x). 
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1314 H Aratyn 

The Thirring field, which we reconstruct from the Bose fields, acts then as an 
intertwining operator from one charge sector to another. 

The global gauge transformation is not spontaneously broken in the Fock represen- 
tation in agreement with Coleman’s theorem (Coleman 1973) which asserts the 
non-existence of Goldstone bosons in the positive two-dimensional theory. The 
transformation properties with respect to the conformal group will be studied in this 
paper in the canonical framework. The Bose constituents 4 ( * ) ( x )  and &‘*’(x) of the 
Thirring field $ ( x )  will transform inhomogeneously under Lorentz and scale trans- 
formations, in such a way that $(x) transforms in the standard way under these 
transformations. These transformation laws are completely consistent with positivity 
conditions and, in particular, require the two-point functions including different 
components of the Thirring field (in a representation which diagonalises y 5 )  to vanish. 

Other authors (Ringwood 1979, Seiler and Uhlenbrock 1977, Freundlich 1972) 
used box normalisation to reveal the structure of the charge sectors and their relation to 
the fermion-boson correspondence. 

Our formalism makes it possible to avoid the infrared divergencies, which arise in 
the theory of the scalar massless field in two dimensions, by the appropriate regularisa- 
tion of some integrals and by restriction of the family of test functions in order to 
remove the boson zero-energy modes. In particular we do not need to introduce ad hoc 
the charge-raising operators (see Freundlich 1972) because we obtain, in a natural way, 
understanding of the Fermion field as an intertwining operator. 

Hence there is no need to reformulate the two-dimensional theories by rising a 
compact space formalism, which is not Lorentz invariant or by using the indefinite 
metric formalism which makes the fermion-boson equivalence purely formal. 

The present paper is organised as follows: § 2 is devoted to a recapitulation of some 
elementary facts about solutions to the one-dimensional wave-equation. In § 3 we 
construct the parity conjugate field &(x) and the charges CP and 6. Particular attention 
is paid to the PoincarC and dilatation transformation properties of the fields 4 ( * ) ( x )  and 
&(*)(x). In § 4 we present a heuristic approach to the construction of the charge raising 
operators and superselection rules for the free massless boson field. 

The Thirring model is discussed in $ 5 .  We emphasise the fact that one can attribute 
definite spin and scale dimension to the Thirring field +(x) only if one interprets $(x) as 
an intertwining operator between inequivalent charged sectors. In Q 6 we make several 
remarks about the formalism presented by Nakanishi and Hadjiivanov et al. We 
reproduce Hadjiivanov’s transformation laws from the canonical approach and show 
that they can be given an interpretation consistent with our conclusions. 

In the appendix, the expressions for D‘*’(x) and fi(&)(x) and related formulae are 
summarised. Throughout this paper we follow the conventions of Nakanishi (1977a, 
1978, 1980). 

2. The parity conjugate of massless fields and commutator functions D ( x )  and 
f i ( x >  

The one-dimensional wave-equation Of(x)  = 0 is satisfied if and only if f ( x )  is of the 
form 

f b o ,  XI) = f R ( x o - X l )  + f L ( X O + X I )  

where f~ and f L  are m y  differentiable functions of one variable. The variables xo - x1 
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and xo + x1 are used in the light cone formulation of the Thirring model (Dell-Antonio 
1972). 

Instead of working with fR and fL we can take another approach. Let us introduce 
two invariant solutions of the wave-equation 

D ( x ) = ~ [  d2p&(po) 6(p2)e-”” = -&(x0)e(x2)= -3[(e(x1+x0)--e(x1-xo)] (2.1) 

& X I =  -- 5 d2pE(p1)S(p2)e-’Px = - Z E ( X  )e(-x ) =  -~ [e (xo+x1) -~ (x0-x1) ] .  

1 

1 1 1  2 

2 m  
(2.2) 

The existence of d ( x )  is intimately connected with the two-dimensionality. D(x)  and 
d ( x )  are related by 

(2.3) a,D(x) + E,”a%(x) = 0. 

If f(x) is any function satisfying Uf(x)  = 0, then (Nakanishi 1977b) 

where 

f Z o g = ( 2 )  g-f-. ag 
ay0 ay0  

Now, when f(x)  satisfies the massless equation, there is a function f ( x )  which is related 
to f(x) by 

By equation (2.3) this relation can be written in differential form 

af(x) + &,,d”f(X) = 0 (2.6) 
or 

and Cl.?(x)=O. f(x) us called the parity conjugate of f(x), as f (x)  and f(x) cannot 
simultaneously be of the same parity. When alf(x) vanishes at infinity we can show that 
the right-hand side of (2.5) is independent of yo. Then we set yo = xo and obtain 

dJ(x) + E,,a”f(x) = 0 

(2.7) 

For consistency between equations (2.6) and (2.7) it is necessary to assume fix0, +a) + 
r(xo, -00) = 0. 

Now we can also write (2.6) in integral form as 

J-m 

or 
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where we have assumed that f(xo, + W) +f(xo, - C O )  = 0. As an example we note that 
D(x) ,  d ( x )  and d"'(x) satisfy the condition 

f(xO, +CO)+f(XO, - C O ) = O  

(e.g. limx1-,*30d'(*)(x) = r i / 4 )  and the spatial derivatives of these three functions vanish 
at infinity. Equations (2.5) and (2.7) yield 

30 30 

dy 'D(y)a 'od(y-x)=$ dy' E(x'--~')~oD(xO, y ' )  I-, 
--oc I_, 
I-, J L  

cc 30 

D ( x ) = /  d y ' d ( y ) & f i ( y - x ) = ;  d y ' ~ ( x ' - y ' ) ) a o ~ ( x o , y ' )  

30 cc 

d'"'(x) = dy'D'"(y)&$(y - x ) = $  dy' E(x ' -~ ' )&JI(* ' (xO,  y') ,  

We introduce the Fourier transform of any f(x)  which satisfies the massless wave- 
equation 

(2.11) 

where p means non-negative and n non-positive frequency solutions to Of(x) = 0. It is 
understood in (2.11) that for fp(0) =fn(0) = 0. We now define f'*'(x) as 

oc; m 

f'*'(x)= - i  dy'D'*)(x-y)&f(y) = - i  dy'f(y)$oD(T'(y-x). (2.12) I-, 
It is straightforward to show that 

(2.13) 

(2.14) 

3. The scalar massless field 

The scalar zero-mass quantum field in two space-time dimensions plays a fundamental 
role in the construction of solutions to solvable two-dimensional models. As we shall 
see, the original features of this theory lead directly to the well known Lorentz and 
dilatation transformation properties of the Thirring field. 

The field equation and the commutation relation for the quantum scalar field 4 (x) in 
two dimensions are 

There exists a conjugate field &(x) of 4(x) ,  which is related to 4 ( x )  by 

a& (x) + E,, d"&x) = 0 (3.3) 
and satisfies of course the wave-equation 

O&x) = 0. 
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Because we work in Langrangian framework with 

= 3aF4a,4 = -3a,&a.& 
we must require for the conjugate field the same commutation relation as for 4(x) 

[&W, &(Y)I=iD(x-Y). (3.4) 

Instead of defining a conjugate field by the integral which is a copy of equation (2.7), 

with possible (and really existing, as we shall see) convergence problems at the lower 
and upper limit of integration, we can guess directly the commutation relation between 
4(x) and d(4. 

Using equations (3.3) and (3.4) as a definition of the field &(x) we find 

c~(x),&(Y)I = - Y )  + c (3.6) 

where c is an imaginary number. Parity considerations (from (3.3) we see that 4 ( x )  and 
d(x) cannot simultaneously be of the same parity) show that the constant term c must 
be excluded from (3.6). With c = 0, equation (3.6) (like equation (3.4)) is symmetric 
under the interchanging 4 t, d. When the Fock space is endowed with a positive metric 
(see 9 4), the constant c will in any case play no role. The commutation relation 

[4(x), &(Y)I=i&-Y) (3.7) 

makes it possible to consider both 4(x) and &(x) as fundamental objects. It is clear that 
(3.7) and (3.4) are the immediate consequences of (3.5) together with (3.2) and the 
definition 

leads from equation (3.4) to (3.2) and (3.7). 

expressed in terms of 4(x) using (3.5). 

& ( x )  or 4(x) owing to their convergence problems (see (3.13)). 

following Nakanishi (1977b), the formula 

Equation (3.8) shows that 4(x) can be expressed in terms of &(x) and &(x) can be 

As we emphasised above these two equations cannot be used as the definition of 

In order to separate two frequency parts of the fields 4(x) and &(x) we use, 

m 

4(*)(x) = -i dy' D'*)(x - y ) & $ ( y )  I, 
and 

(3.9) 

(3.10) 

From these definitions, (3.2), (3.4) and (3.7) and with the help of (A.6)-(A.9) we find 
that the only non-vanishing commutators are 

(3.11) 

(3.12) 

[&*)(X), p ( y ) ]  = [Q'")(x,, & ( y y ) ]  = D(*'(X - y )  

[4(*)(x)&*)(y)] = d(*)(X - y ) .  
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Because D(*)(x) is divergent as lxll+CO we cannot use equation (3.5) in (3.11) and 
(3.12); explicitly 

= D'+)(X .- y )  -+[I)(+)(,YO- y " ,  +CO) +D'+'(X0- y o ,  -CO)]. 

In other words, it is impossible to define D'*'(x) as 

(3.13) 

We next consider the space integrals 

and 
L 

&L = I-, dxl ao&(x). 

Although the limit of QL. and 6L at L .+ 00 does not exist, there are no difficulties with 
the limit in 

j-:dx'[aOoi(x), *I (3.14) 

and 

(3.15) 

where * stands for the operators 4 (x), &(x>, &(*)(x) and $(*)(x). As an illustration we 
calculate the following commutation relations 

m 

[%, &(x)] = i I-, dy' a o D ( y  -x) = - i  

i 
[Qm, +'*'(x)]= 5 dyl  doD'='(y -x) = -- 

LV 

-c€ 2 
.m 

However, there is a difficulty with 

J--cc 
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and we must calculate this in the following way 

We can now define two important quantities 
,.L 

. L  

(3.17) 

(3.18) 

where limL.+, J F L  dx’ means regularisation as described above in (3.15). It is now clear 
that we have the following commutation relations 

(3.19) 1. 
[@, 4(x)]  = --i [@, 4(* ’ (X) ]  = -21 

and similarly 

[6, $(XI] = - i [6, &*)(X)] = -:i. 

It is easy to see that Q, commutes with J‘*’(x) and 6 with 4‘*)(x). 
It is also possible to separate @ and 6 into two frequency parts 

“ L  

(3.20) 

(3.22) 

All these operators defined in (3.17), (3.18), (3.21) and (3.22) commute with each 
other. The convergence problems with expressions (3.5) and (3.8) shown explicitly in 
(3.13) suggest that, in contrast with the usual theory, limxl+kW 4 (x) does not vanish. But 
we can assume without contradicting the commutation relations (3.1 1)-(3.12) that 

lim (x ‘)-“4 (x) = lim (x l ) - -E$(~)  = o for any E > 0. (3.23) 
lxll+m /x’/+cc 

To ensure convergence in definitions (3.9) and (3.10) we must regulate the integrals 

dy’D‘*)(x - y ) z 0 4 ( y )  (3.24) 

(3.25) 

Postulate (3.23) ensures that 4‘+’(x) and J(*)(x) are conjugate to each other 

a @ p ( x )  + F @ , , a Y p (  x )  = 0. (3.26) 

Our next goal is to investigate the behaviour of a free boson field under Lorentz and 
scale transformations. The energy-momentum tensor 

is symmetric, conserved and traceless. Therefcre the conserved Poincark generators 
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and dilatation charge can be constructed and are given by 
m 

p 0 -I = 2 I_, d ~ ' [ ( a o 4 ) ~  + ( ~ 1 4 ) ~ l  

m 

PI = I-, dx' 8 0 4  314 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

Since 8 , 4 ( x )  + E,,,~'&(x) = 0, these generators can be expressed in terms of &(x) in the 
same form as above. 

Let us assume for the moment that these free scalar fields d ( x )  and &(x) transform 
canonically under PoincarC transformations: 

(3.32) 

(3.33) 

Now, the definition of ~$'*)(x) given in (3.24) implies 

[d'*)(x), Moll = 1: dy' D'*'(x - y)a"o(y& -ylao)4(y). (3.34) 

By performing an integration by parts and using a$$ (x) = 8;d (x) the right-hand side OE 
(3.34) becomes 

lim [ID'"(X - y ) ( y l a l -  ~ O ~ O ) ~ ( ~ ) I : : I L L  
L+oC 

" L  

L 

dy'(yoa: - ylai)D'*'(x - y ) d o 4 ( y ) .  (3.35) 

The surface term in (3.35) vanishes by the same reasoning as in (3.16). If we now make 
use of the formulae presented in the Appendix (A.15)-(A.16) we obtain 

[4'*)(x), MO11 

L 

= L + P  lim ~ - ~ d ~ 1 ( ~ ~ 8 1 - ~ O a o ) ~ ' ~ J ( ~ ~  - y ) a 1 4 ( y ) T  L+oC2Ii- lim -!- 5 -L dy' 814(y)  

(3.36) 

Integrating by parts the first term on the right-hand side of (3.36) we obtain 

[d'*)(x), M O ] ]  = i(xoal - x l a 0 ) ~ ' * ' ( ~ ) ~ & / 2 7 ~ .  (3.37) 

(3.38) 
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i.e. 4(*)(x) and $(*)(x) are transformed under the Lorentz transformation 

sinh ”) = (cosh 
s inhx coshx 

4(*)f(x‘) = 4(*)(x)*ix&/2r 

4(*)’(x’) = $(*)(XI * ix@/277 

as 

where 

x ’ ~  = (A-l)*vx”. 

(3.39) 

(3.40) 

Assuming that the free fields 4 (x ) ,  $(x) transform canonically under scale trans- 
formations 

[4(x),  Dl= -ix”a,4(X) (3.41) 

[$(x), D ] =  -ixwa,qj(x) (3.42) 

and repeating the same considerations as above we obtain 

[~ (* I (x ) ,  D I  = - ixNaw4(*)(x) * @ / 2 r  (3.43) 

(3.44) 

and the same relations with &(*)(x) and & instead of q5‘*’(x) and @. If the scalar fields 
4 (x) and &(x) transform inhomogeneously under Lorentz transformations we expect 
that 

[4(x) ,  Moll= i(xoa,-xlad4(x)+F (3.45) 

[$(x), Moll = i(xo& -xla,)$(x)+ G (3.46) 

where F and G are some constant operators. 
If we insert equations (3.39)-(3.40) in our commutation relations (3.1 1)-(3.12) then 

it is easy to see that they are consistent with the properties of D‘”(x) and d ‘” (x )  under 
Lorentz transformations (see the Appendix). Therefore the extra terms F and G should 
give no contribution to the commutation relations. Then the only possible choice for F 
and G is 

F = k &  and G = k @  

where k is some arbitrary number. 
If we modify equations (3.41)-(3.42) by 

[q5(x), D ]  = - ix,a”4 (x) + F 

[&(x), D I =  - ix ,a ,qj(x)+~ 

From (3.28)-(3.29) we derive directly 
then the same considerations as above restrict F and G to be kl@ and ks& respectively. 

 XI, P,] = ia,4(*)(x) (3.47) 

(3.48) 
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By using (ao)2D'*'(x) = (81)2D'*'(x) and integrating by parts in y l ,  the last equation 
becomes 

1 
- D'YY - XI804 ( Y  1 3 2 , 8 1 4  ( Y ) ]  

= i(xoal -xlao)4'*)(x) * 6/27r. 

Then the right-hand side of (3.49) is obtained. From (3.47)-(3.52) we conclude that the 
free scalar fields 4 (x) and $(x) transform canonically under Poincare and scale 
transformations. We see that formulae (3.47)-(3.52) agree with those we found 
previously using only the definitions of d'* ' (x)  and &(*'(x), and that they leave all 
commutators of the scalar fields (equal frequency commutators included) invariant. 

4. Superselection rules of a free massless boson field 

It is well known that in order to work with the positive definite metric it is necessary to 
restrict the class of the test functions allowed for 4(x) .  Let us consider an indefinite 
Hermitian form 

(flg) = i 1 dxl  g'"(x)a"of*'-'(x) (4.1) 
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with functions f(x) and g(x) obeying 

O f ( x )  I- Og(x) = 0. 

Now, if we insert in (4.1) the non-negative frequency solution to Uf(x) = 0, 

O0 dp' f(x) = -- p e-iPx J-, 2pO 

with the condition 

&(O) = 0 

then the form becomes positive definite and 

(4.2) 

(4.3) 

when & ( P I )  Z 0. 

product of two states. For this purpose we define the vacuum 10) by 
We can now introduce the Fock space F by identifying the form ( * I 8 ) as the scalar 

m m 
' - ( + j  [ dx' f(x)&4"'(x)10} = [ dx' f ( ~ ) 8 ~ 4  (x)IO}  = 0 

J-m J-m 

with f (x)  defined in (2.11). If 

(4.5) 

withf(x) now given by (4.2), is the one-particle state then (flg) is just reproduced as the 
scalar product of two states I f )  and Ig). If 

(4.7) 
J-00 

then 

vigi = -(figT. (4.8) 
In order to introduce CP and 6 on the Fock space F we rewrite definition (4.2) as 
(Nakanishi 1977a, 1978, 1980) 

(4.9) 

where &p') still obeys (4.3) and c is a constant number. It is straightforward to show 
that we still have 

by using the fact that C S ? ~  dxl aof(x) = -icrfp(0) = 0. This means that 

(fIlC> = 0 
where 

(4.10) 

(4.11) 
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By substituting c in (4.5) we obtain 

@(+'IO} = &(+'IO} = 0. (4.12) 

We see that c@(-'/O} and cQ,'-'IO} form the zero norm states and must be orthogonal to 
any one-particle state on the Fock space. We check this directly: 

(cif> = (01cd+) 
a2 ;o 

dx' f ( x ) & 4 ( - ) ( x ) 1 0 }  = cJ dx' aof(x) = o 

dxl f ( x )&J( - ' ( x ) /O}  

-m 

a2 

(4.14) 

Thus we must additionally postulate 
m 

dxl  aof(x) = f ( ~ )  - f (  - CO) = 0. I, 
From the discussion of 8 1 we know that 

f ( m )  + f (  - a) = 0 

f ( C O )  = f (  -03)  = 0 

f(03) +f( - 03) = 0. 

f(m) = f( - 03) = 0. 

Hence 

(4.15) 

(4.16) 

Since the zero-norm states in F are orthogonal to any vector in F (we assume that all 
test functions satisfy conditions (4.16)) we can identify the physical space, as usual, with 
the quotient space Ho,o = H/Ho,  where Ho is a subspace of a zero-norm state and H is 
the total Fock space given by 

(4.17) 

The matrix elements of physical fields in H depend only on equivalence classes, i.e. on 
vectors in Ho,o. If IO'} is an equivalence class in Ho,o which contains 10) from H, then 

(4.18) 

i.e. both charges Q, and 6 annihilate the new vacuum. The operators Q, and 6 commute 
with all local, physical field operators from H, as 

q o ' }  = 4-10') = 0 

.m 

with f(x) satisfying (4.16). Hence @ and 6 define superselection rules with Ho,o as a 
zero sector. We must additionally postulate the vacuum state to be invariant under 
PoincarC and dilatation transformations. This assumption is consistent with the condi- 
tions (4.18) because @ and & are PoincarC-and scale-invariant. Moreover it is easy 
to see that if the function f ( x )  obeys two conditions (4.3) and (4.15), the functions 
f(A,a)(~) =f(Ax + a )  and f A ( x )  = f ( h x )  would obey them too. In conclusion, the vacuum 
state IO} defined by (4.5) is invariant under these two transformations. 
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The Lagrangian 3 = $a,&3"4 is invariant under global gauge transformation 

4 (x) + 4 (x) + a where a E R .  (4.19) 

It is easy to prove that this transformation is not unitarily implementable in four 
dimensions (in the Fock representation). But in our case the charge 0 generating the 
symmetry vanishes on the physical space and this forces the symmetry to act trivially (as 
the identity) on Ho,o, i.e. 

m m 

dx'f(x)&(d(x) + a )  = dx' f(x)&4(x).  I, I, 
The same remark can be made about the symmetry 

&(x) + &(x) + b. (4.20) 

We have identified the Fock representation with the charge zero sector. The different 
charge sectors will now be shown to correspond to inequivalent representations. For 
this purpose we shall study the field translations 

P ( X ) +  #d*)(X) = #d*)(X) +f"'(x) ( 4 . 2 1 ~ )  

d '* ' (X)  + &*I (x) = &'*)(X) + f ' " ( X ) .  (4.2 1 b )  

If we assume the conditions 

or 

(4.22) 

(4.23) 

then (4.21) defines a non-implementable automorphism of commutation relations. The 
translation (4.21) is formally generated by 

(4.24) 

which can be interpreted as an intertwining operator between the Fock representation 
and an inequivalent representation. The new vacuum is defined by 

(4.25) 

and the Hilbert space Ha,; is created from I C Y ,  6 ) .  It was shown by Ezawa (1979) that 
with conditions (4.22), PoincarC group transformations will be unitarily implemented 
on Ha,;. Hence we consider the representation Ha,; as a physical one. 

Let us choose the following example of the function f(x)  which is introduced into 
equation (4.24) 

f (x)  = e(x0-x1). (4.26) 

Since f (  + 00) = - 1 and f (  + CO) +f( - 00) = 0, then 4 = - 2. Function f(x) is related to 
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f(x) through 
00 

h) = t [ dy' E (x' - yl)aof(x) = E ( X '  -xo) = -f(x). (4.27) 
J-CX 

Hence a! = 2 and 
m m 

d x ' f ( x ) & # ~ ( x ) = 2 4 ( x ~ ,  *')-I dx' E ( x " - x ' ) ~ , ~ ( x ) .  (4.28) I, -- m 

But as explained in § 3, the commutator 

is ill defined and (4.21) breaks down owing to these infrared divergencies. But it still has 
meaning to consider c-number translation of local operators 4"'( f )  and &(*)(f) 
generated by (4.24). If f(x) is as in (4.26) we obtain 

(4.29) 

(4.30) 

With the intention of circumventing these infrared difficulties described above, we 

(4.31) 

where the argument U is held fixed. U(a ,  b )  generates the following c-number 
translation of local field operators 

4 k ) +  4 ( g ) + a g ( u )  + b g " ( U )  (4.32) 

(4.33) 

4 ( g )  + 4k) +2g(x0, x") -2i(x0,  xO) 

&g)  + &(g )  + 2,i(X0, x") - 2g(x0, x") 

where g(x) is the test function satisfying condition J?.. dx' a,g(x) = 0.  

introduce the intertwining operator 

~ ( a ,  h )  = exp(-ia4(u) - ib&(u)) 

d k )  + ( g )  + @(U) + bg(u) .  

U = exp( - i a a  -- ib&) 

We see that U(a,  b )  is a generalisation of the global gauge transformation generator 

(4.34) 

The operator U ( a ,  b )  can now be used to iritroduce the vacuum of Ha,< in an 

(4.35) 

which generates (4.19) and (4.20). 

alternative way, 

Icy, 6 )  = U(a ,  &)lo')* 
The charges @ and & are no longer equal to zero on Ha,<. From definition (4.23) we can 
easily evaluate 

00 

@la, 6 > = dx' &f(x) la ,  6)  = a! Icy. 4) (4.36) i., 

(4.37) 
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Of course, (4.36) and (4.37) can also be computed with the aid of equation (4.35). Then 
the intertwining operator U ( f )  can be interpreted as a charge raising operator and 
inequivalent representations Ha,& as different charge sectors. The charges Q, and 6 act 
on Ha,a; as the numbers a and cu" respectively. 

5. The massless Thirring model 

In this section we reconstruct the Thirring field from the massless Bose field. It was 
shown (Nakanishi 1977c) that the solution of the massless quantum Thirring model can 
be expressed in terms of ~$'*'(x) and &(*)(x) in the following way 

(5.1) $(x) = exp( - ibr  5 4 -'-I (x))exp(iaq5-'(x)) exp(iac$'+)(x)) exp( - ibyS&'"(x))u 

where U = (E;) is a two-component c number. The field equation of the Thirring model 
is 

iyw8,4(x) = -gy ' " :  J,(x)qb(x): (5.2) 

J, ( X I  = 4ci, (x) + L ( X I 1  (5.3) 

where we adopt Johnson's definition (Johnson 1961) of the current Jh(x) :  

j,(x) and T f i ( x )  are given by 

j,(x) = lim j,(x, E )  
&o=O 

(5.4) 

( 5 . 5 )  

where 
2 

E 2 =  - &  E . E = O .  

Before we show that @(x) from equation (5.1) is the solution of equations (5.2), let us 
study the Lorentz transformation properties and statistics of the field $(x). The 
Lorentz properties of the Fermi fieid $(x) depend totally on the Lorentz properties of 
the Bose constituents 4(*)(x) and +'*'(x) presented in (3.49)-(3.50). 

Under the Lorentz transformation (with a boosting angle x) $(x) transforms as 
$'(x'j = exp( -iby 5 4 -'-) (x) - bxr'w2l-r) exp(ia4'-'(x) + ax&/2l-r) 

5 -'+I x exp (iaq5'+'(x) - ax&/2l-r) exp( - ibr '  4 (x) + bxy5Q,/21-rj~. (5.6) 

The extra factor arises when Q, is moved to the middle of the second and third factors 

The well known transformation property 
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is obtained when 

ab = IT. (5.9) 

From the commutation relations presented in 0 3 we obtain 

$r (x ) $s ( y  1 = exp[ - Mrs (x - Y )l$s (Y  ) $r (X 1 
$r(x)$t ( y )  =exp[Mrs(x - y ) I $ t  (y)$r(x) 

(5.10) 

(5.11) 

where 

Mrs(x-y)=i[a2+b2(-l)r~s]D(~-y)-iab[(-1)r+(-l)s]]lj(x-y) (5.12) 

Then, since for (x - Y ) ~ < O  we have D(x  - y )  = 0 and ]lj(x - y )  = - i ~ ( x ~ - - y l ) ,  we find 
with ab = (2n + l ) ~ ,  (n being an integer) 

exp[ F Mrs(x - y )] = - 1 

exp[rMrs(x - y ) l =  1 

for (x - Y ) ~ < O  and r = s 

for (x - y ) ’ <  0 and r # s. 
(5.13) 

We conclude that for s =$(ab = IT) one gets Fermi statistics for the same spinor 
component but Bose statistics for different ones. However, a simple Klein trans- 
formation 

(5.14) 

will remove such an anomaly and restore complete Fermi statistics (Stoyanov 1978, 
Hadjiivanov and Stoyanov 1979b). Now we calculate the current J , ( x ) .  We substitute 
(5.1) into (5.4) and ( 5 . 5 ) ,  putting 

l U i / 2  = , , ,(a2+b2)/2rr i = 1, 2. (5.15) 

-+ $K (x) = exp( - ia & / ~ M ( X )  

Taking the limits we obtain 

a + b  
2 7  ( X I  J , ( x )  = -- 

for ab = IT. Hence the field equation (5.2) is satisfied by $ ( x )  if and only if 

g b - a = - ( a + b ) .  
21T 

Together with ab  = IT, equation (5.17) leads to 

2 21T-g b 2 ’  = 7 2  2IT+g 
a =IT- 

2IT+g 2 7 - g  

(5.16) 

(5.17) 

(5.18) 

under the assumption that Ig/ < 27~. 

same relation with tildes in the definition (5.1) of $ ( x )  we obtain 

$’(x) = exp(iby5&‘-’(Ax) - by5& In A/2.rr) exp(iaq5-’(Ax) + a 0  In A / ~ I T )  

Now we consider the dilatation transformation of $ ( x ) .  Inserting (3.44) and the 

x exp(iaqb‘+’(Ax) - a @  In A/2.rr) exp( -iby’&(+’(Ax) + bys& In A / ~ I T ) L I  

a 2 + b 2  
= $(Ax) exp( 7 In A) = A(a2+b2)’4“  *(Ax) (5.19) 
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or commutating $(x) directly with the generator D of scale transformations we obtain 

(5.20) 

It is now obvious that we can attribute a definite scale dimension d, to the field $(x). 
From (5.19) we find 

a 2 + b 2  14.rr2+g2 1 g2 
da=-=- 2 = - +  

471 24.ir2-g 2 4 r 2 - g 2  
(5.21) 

where we used equation (5.18) with lgl< 271. For the non-interacting case we get 
d, = s = i, as expected. Let us construct from +(x) a composite field 

c+,(x) = : ~ ( ~ ) ( 1 *  r5)+(X): (5.22) 

where the normal product : . . .: is defined by a space-time limiting procedure in the 
Thirring model. We see that 

c++(x) = 2 :+T (x)+2(x): 

c+-(x) = 2 :+; (x)+1(x):. 

:eA: :eB: = e[‘4+’B-1 :eA+B:, 

First we recall the well known formula 

(5.23) 

(5.24) 

(5.27) 

(here the limit can be taken without averaging with E l ) .  Inserting (5.25) in (5.26) we 
obtain the final expression for (+*(x): 

(5.28) c+,(x) = 2 exp( r  2ibJ‘-’(x)) exp(7 2ibqT‘+)(x)). 

Under a scale transformation c++(x) transforms as 

cr; (x) = 2exp( - 2ib&‘-’(Ax) - b& In A/.ir)exp( - 2ibJ‘+’(Ax) + b& In A / T )  

= exp(b2 In A/T)U+(AX) = A~’/=v+(Ax).  (5.29) 

Hence we can assign an anomalous dimension to the fields v,(x) 

b2  271+g d,, = d,- = - = - 
71 271-g‘ 

(5.30) 

If we started with ths field equation id$=g:B$: we would obtain d,,= 
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(27~  - g)/(27r + g). From (5.28) we find the both &(x)$(y) and q(x)ys$(y) are Lorentz 
invariant. 

Let us now return to equation (4.8) and take the vacuum expectation value of the 
left- and right-hand sides: 

(5.31) (‘01 $’(x‘)IO’l = exp( - xrS/2){’01 4 (x)lO’}. 

Inserting equation (5.6) in the left-hand side of equation (5.31) we find 

r 0 I $‘ (x ’) j 0’) = (‘0 I (I, (x )IO’}. (5.32) 

We removed the charges @ and 6 from the first and second factor appearing in (5.6) to 
the left where they act on the vacuum, and the charges from the third and fourth factor 
to the right. We used, of course, the fact that 0 and 6 annihilate the vacuum IO’}. Hence 
(5.31) and (5.32) imply that 

(‘Ol$(X)lO’} = 0. (5.33) 

Equation (5.33) is clear, because $(x) carries the charge and IO’} defines the vacuum for 
the charge zero sector H0,,,. From definition (5.1) we find 

(5.34) 

(5.35) 

(5.36) 

6$r(x)IOrI= -b(-l)r$r(x)Iof~ (5.37) 

and it follows that 

$ r ( X ) / O ’ I E  Ha,-(-l)‘b. (5.38) 

Accordingly 

(a ,  ~l$r(x)lO’}= 0 when (a ,  &) # (a, - (-  1)‘b). (5.39) 

We see that the Thirring field acts as an intertwining operator from one charge sector to 
another. 

Let us now consider the only non-vanishing matrix element 

(a ,  - ( -  l)rbl$;(x’)lo’l. 

We arrange the charges appearing in (5.6) in such a way that the first Q, acts to the left 
and the rest act to the right. We obtain 

( a ,  - ( -  1)‘bI exp[-bx(- 1)‘@/2~I$r(x)lO’l 

= e ~ p ( - u b x ( -  1 ) r / 2 ~ ) ( ~ ,  - ( -  l)rbl$r(x)[O’} (5.40) 

which is consistent with the spinor transformation law ( 5 . 8 ) .  Let us study dilatation 
transformations in the same way: 

(4  - ( -~) rb l$~(x) lo’ l  

= (a, - ( -  l)‘b/exp[ - ib( - l)r&(-)(Ax) - b(  - l)r& In A/27~] 

X exp[iaq5-’(Ax) + U @  In A/27~]exp[iaq5‘+’(Ax) - U @  In A/27~] 

x exp[ -ib( - l)r&(*)(Ax) + b(  - l)rcb In A/2rr]lO’}. 
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We get the factor exp(a2 In A/47r) from charges CP when we move them into the middle 
of the second and third factors. Next we remove the first & to the left and the fourth to 
the right. This gives us the factor exp( - b 2  In A/4.rr). 

(a, - (-- 1)'bl4~(xIlOf} 

= exp{[(a'- b2)/4.rr] In A}(a, - ( -  l)'b/exp[ - b&( - 1)' In A/27r] 

x $,(Ax) exp[b(- l)r& In A/2.rr]lO'} 

= exp[(a2+ b2)/4.rr] In A}@, - ( -  l)rb14r(Ax)10f}. (5.41) 

The result is consistent with the transformation law (5.19). It is easy to see that an 
arbitrary rearrangement of charges CP, 6 between (a, - ( -  1)'bI and IOf} leads to (5.40) 
and (5.41). 

It has been shown by Nakanishi (1977~)  that the Wightman function 

wI(x, Y ) = ( o / f i  $:(xi) fi $sL,I;(Yk)Io) 
, = l  k = l  

(where x ={xl, .  . . , x,}; y = { y l , .  . . , y, ,}  and I = { r l , .  . . , r,, sir.. . , s,}) in the limit 
p + 0 satisfies the positivity condition, and 

lim WI(x, y )  = 0 (5.42) 

where p and q are the number of j such that r, = 1 and the number of k such that sk = 1. 
For the definition of IO), see (6.20). 

The question is whether there is any vacuum state which generates the functions 
lim,,o WI(x, y).  We claim that IO'} is the right candidate. Let us consider 

unless n = m, p = q 
IL+O 

(5.43) 

From the definition of [Of} as a vacuum of charge zero sector we easily find that 

Wi(X, Y )  = 0 unless n = m, p = q. (5.44) 

Let us illustrate the proof by an easy example. We choose the following non-vanishing 
function 

?W? (Y)4l(X)l0'1 (5.45) 

and using the Baker-Hausdorff formula we find 

(5.46) 

where z = y -x  and 

F(x,  y )  = rOlexp[ib(&'-'(x) - &'-'(y))]exp[ia(6,'-'(x) -6,(-)(y))] 

x exp[ia (6,(+)(x) - 6,(+)(y))] exp[ib(&"'(x) - 6'+)(y))l10f} (5.47) 

By making use of the transformation formulae (3.49)-(3.52) we conclude that F(x,  y )  is 
independent of its arguments. Setting x = y we obtain F(x,  y)  = 1. 
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From (5.15) we obtain that (5.46) is independent of p. By direct calculation we find 

(5.48) 

We see that the proof can be easily extended to the general case and that the Wightman 
functions coincide with the ones obtained in Klaiber’s paper (1967). 

6. Comments on Nakanishi’s and Hadjiivanov and Stoyanov’s papers 

Nakanishi (1980) use the Fock representation in an indefinite-metric space, where the 
vacuum is defined by 

q5(+)(X)IO) = 0 (010) = 1 (6.1) 

He  assumed the following asymptotic conditions for ao4 (x) and alq5 (x) 

a o q 5 t X ) - ( X 1 ) - 2  (6.3) 

alq5(x) - ( X Y  (6.4) 

as Ixl/+co. 
The conjugate field &(x) is defined in Nakanishi’s framework by 

X 1  

= J-, dyl  ao4(xo, y l ) .  (6.5) 

It is important to notice that only q5(x) is regarded by Nakanishi as a fundamental 
quantity, and therefore all properties of $(x) should de derived from those of +(x) 
(Nakanishi 1980). The conjugate field &(x) satisfies 

O&(X) = 0 (6.6) 

[ & ( d ,  &(Y )I = iD(x - Y ). (6.7) 

Equation (6.6) leads to the following definition of a new ‘conjugate’ charge’ 6 

Because 6 commutes with 4 (x) and (Ol610) = 0 we must put 6 = 0 owing to the assumed 
irreducibility of the field q5 (x). On the other hand the asymptotic behaviour of d l 4  (x) 
shown in (6.4) implies that 6 is ill defined. 

The ambiguous status of 6 in Nakanishi’s formalism reveals, as we shall see later on, 
an important discrepancy between the asymptotic behaviour of 4 (x )  and the irreduci- 
bility of q5. 

Since the symmetry operation &(x) + & ( x )  + c cannot be introduced on the basis of 
the definition (6.5), so the chiral symmetry of the Fermi field i,b(x) + exp(icy5)+(xJ 
cannot be introduced in this formalism either. And this is quite reasonable because CO 
would be a generator of such a symmetry. In conclusion we note that we have a rather 
strange situation with the two different conserved currents aWq5 (x) and d,&(x) but only 
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one well defined charge. The dilatation generator is defined by 
CO 

D = dx1{x~9-10(x)-xo9-oO(x)} (6.9) 

where 

Yo0 = ao4‘-’ao4‘+’ + a14 - a l p  (6.10) 

9-10“ ao~‘-’a14‘+’+ & ~ ( - ) a o 4 ( + ) .  (6.11) 

Thanks to conditions (6.3) and (6.4) the integral in (6.9) is convergent and the generator 
D exists and is well defined. 

It can be shown in the standard way (see the derivation of the formula (3.49) that 

[4(*’(x), 01 = -ix”a,4‘lt’(x)i~‘*’/2.ir.  (6.12) 

Thus we can write 

+(*)‘(x) = 4(*)(Ax) f i In A @ ( * ) / 2 7 ~ .  (6.13) 

From definition (6.1) of the vacuum state we see that the vacuum is invariant under scale 
transformations (6.13). It is straightforward to see that the transformation formula 
(6.13) leaves the commutators of $( * ) ( x )  invariant. 

Let us now assume that &(x) transforms under scale transformation as 

&’(x) = &(Ax) + X  (6.14) 

where X is some unknown term. Applying the scale transformation to the commutator 

[4(*)(x), &(y)l=fi“’(x - Y )  (6.15) 

we obtain the following relation 

(6.16) 

But because the commutator [a(*’, &(x)] = 0 must be invariant under scale trans- 
formations we find that X must obey 

[~‘*’(AX), X] = 0. (6.17) 

Therefore the extra term X must vanish because of the irreducibility of 4 ( x )  and 
(OlXlO) = 0. The same considerations can be applied to &(*I transformation laws with 
the result that $(*)(x) are invariant under scale transformation. But then we get 
contradiction with 

[&‘*)(Ax), &‘S’(Ay)] = D‘*’(x - y )  h l n  A/27r # D‘*’(x - y). (6.18) 

The commutator between &(*)(x) and the scale transformation generator D can easily 
be calculated in Nakanishi’s approach in the following way 

i In A 
27T 

 AX), X] = 7- [a(*’, XI.  
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We can now recognise that the troubles with scale transformation are equivalent t? the 
troubles with 6 in Nakanishi’s approach. If 6 is well defined, then we must put 0 = 0 
and claim &‘*’(x) to be invariant under scale transformation which leads us to the 
contradiction shown in (6.18). If 6 is ill defined, then, according to (6.19) and the fact 
that D is well defined, &‘*’(x) must be ill defined too. Since a,&(x) behaves like (XI)-’, 
see (6.4), the last remark is easy to accept remembering that &(*’(x)= 
- dy ’ D‘”(x - y);&$(y). Anyway, we cannot introduce the scale transformation 
in the Thirring model with Nakanishi’s formalism although the gauge-invariant 
Wightman functions corresponding to the operator solution of the Thirring model 
exhibit scale invariance. 

The last remark concerns the existence of Goldstone bosons. Using [@, Q(x)] = - i 
it is concluded by Nakanishi that (Ol[@, c#~(x)])O) = -i  and therefore that @IO) # 0. In 
our construction it is clear that 0 (as well as 6) is well defined by superselection rules 
and it does annihilate the vacuum. The troubles come from the from the fact that & (x) is 
an illegal operator and must be smeared with appropriate test functions when we 
require the physical space to be a positive definite Hilbert space. 

In Hadjiivanov et a1 framework (1979) the vacuum is introduced by 

4 ( + ) ( X ) I O )  = &(+)(X)\O) = 0 (6.20) 

and the second charge 6 exists. 
The transformation properties of d(*)(x), $‘”(x) under PoincarC and dilatation 

transformations are postulated by imposing the condition that both equation (6.20) and 
the commutation relations must be invariant under transformations. This leads (in our 
notation) to 

(6.21) 

(6.22) 

4(*)’(xr) = b‘*)(x) f i ,y6(*)/2r 

&(*)’(x’) = &(*)(x) i. i,y0‘*)/2r 

(6.23) 

(6.24) 

Of course the fields 4 (x) and &(x) will not be invariant, but transform inhomogeneously 
under transformations (6.21)-(6.24). This explains the fact that the right-hand side of 
equation 

(6.25) 

is not Lorentz invariant and the right-hand side of equation (6.2) is not invariant under 
scale transformations. In our approach the fields 4(x) ,  $(y)  are scalars but the state 10) 
defined in (6.20) is spontaneously broken under Lorentz and scale transformations. 

0 = UAq5‘+’(x)/O) = UAC$‘”(X)U~~UA 10) = (4‘+’(Ax) + i In h9,/27r)lOA) 

where U, 10) = 10,) # 10) because 0(-)10) # 0. Accordingly 

(Ol$b(x)&y)lO) = W ( X  -- y )  

If UA is a scaling symmetry operator, then 

(6.26) 

(old(x)4(y)lo) = (0, Id(Ax)d(Ay)lOA) (6.27) 

Applying equation (6.26) we can show that the right-hand side of equation (6.27) is still 
equal to D‘+’(x - y )  and there is no contradiction. The state 10) is not the vacuum state 
for the physical Hilbert space with positive metric; thus this spontaneous symmetry 
breakdown has no significance. 
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The transformations (6.21)-(6.24) can be easily reproduced if we define normal 
ordered Poincarh and diltation generators by 

(6.28) 

and by (6.9). These generators annihilate IO) and a simple calculation (see the proof of 
(3.49)) leads to 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

These equations are, of course, compatible with equatisns (6.21)-(6.24). 
Inserting equations (6.21)-(6.24) into (5.1) we obtain 

$’(x‘) = exp[- (bx/2.rr)y 5 @ (-1 I exp[(ax/2.rr)6(-’1$(x) 

(6.33) x exp[- (ax)/2.rr)6(+)] exp[(bx/2.rr)y 5 0 ‘+I 1 

and 

$’(x) = exp[ - ( b y 5  In A/27~)6‘-)] exp[(a In A/2rr)@(-’]$(Ax) 

x exp[ - (a  In A / 2 ~ ) 6 ( + ) ]  exp[(by5 In A ) / 2 ~ ) 6 ( + ) ] .  (6.34) 

The transformation laws (6.33) and (6.34) are not the standard ones and therefore one 
cannot assign any spin or conformal dimension to the field $ ( x ) .  In §5 we saw that the 
field &(x) is an intertwining operator between zero charge sector and Ha,-(-l)‘b. The 
charges @ and 6 act on Ha,-(-l)rb as a numbers a and - ( -  1)‘b respectively. 

+:(X’ ) /O’}  = exp[- (bx/2.rr)(- I)‘@(-)] exp[(a~/2.rr)6“-’]$~(x)J0’} 

With this identification we find 

xexp[-(xab(- 1)‘/2.rr)l$r~~)IO‘l (6.35) 

$:(x)lO’} = exp{[(b( - 1)‘/2.rr] In &(-I} exp[(a In A/~T)@(-’]$~(AX)~O’} 

= exp{[(a’+ b2)/4.rr] In A}$r(A~)IO’}. (6.36) 

Thus, all non-vanishing matrix elements of $(x) still transform with spin ;(ab = .rr) and 
anomalous dimension d, = $+g2/(4.rr2--g2). In general it is easy to verify that the 
gauge-invariant functions 

{ ’oIJ(x;n) * * tC;(xi+l)$(xi) 0 * * $(x;)IO’I 

transform under Lorentz transformations to 

rOIJ (x2n)  exp[- (bx/2.rr)yL@(+)1 exp[(bx/2.rr)yLi a 1 $ ( ~ 2 n - l )  . i ( x n + l )  
(-1 - 

x exp[(a~/2.rr)6(+)] exp[- (b~/2 . r r )y ;+~ CP(+’] exp[- (bx/2.rr)y;0‘-’] 

xexp[(axy/2.rr)6,‘-’]~(x,). . . $(xz) 
x exp[(bx/2.rr)yj:d+’1 exp[- (bx/2.rr)y:@‘-’~$(xl)I0‘) 



1336 H Aratyn 

(6.37) 

The same phenomenon emerges when we consider Wightman functions 

(6.39) 

defined on the state IO). In order to get the positive definite theory we let p + 0 ( p  is the 
regularisation term). In the limit p -+ 0 in the Wightman functions the field +(x) 
acquires the fixed spin (Hadjiivanov and Stoyanov 1979b) 

s = abI2.rr 

and scale dimension 

d = ( a 2 +  b2)/4.rr. 

In both theories there are no trace of spontaneous breaking of the gauge symmetries. 

7. Conclusions 

We have seen in this paper that it is possible to formulate a consistent quantum theory of 
a two-dimensional free massless scalar field 4 ( x )  in a positive definite Hilbert space. 

Many of the problems connected with bosonisation have been analysed in terms of 
the operators 0 and 6. 

The fermionic selection rule emerged from charge superselection rules defined by 
these two operators. Our operator solution to the Thirring model possesses the 
following reasonable properties: Wightman functions are vanishing for non-equal 
numbers of + and +*, gauge transformations of the first kind are trivially implement- 
able on each charge sector, the spinor fields are transformed in the standard way both 
under Lorentz and scale transformations and, contrary to Nakanishi’s framework, the 
chiral charge is well defined. 

Remembering that the blame for all problems with the indefinite metric can be laid 
uniquely on the regularisation term p, it is natural to expect that, in the limit p -+ 0, the 
Wightman functions will define the positive two-dimensional theory. 

The Wightman functions obtained in that limit have been shown to be identical with 
those generated from the vacuum of our charge zero sector. 

The existence of the charge sectors in the massless boson field theory exhibiting 
fermionic degrees of freedom is closely related to the problem of attributing spin and 
scale dimension to the Thirring field +(x); this explains, in an easy way, the results 
obtained by Hadjiivanov and Stoyanov (1979b) in the limit p + 0. 
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Appendix 

We present here some facts and definitions about the functions D'*'(x) and E(*)(x) .  To 
introduce the positive-and negative-frequency parts of D(x) ,  it is necessary to use an 
infrared cut-off, as shown by Klaiber (1967). Following Nakanishi (1977b) we define 
D"'(x) by 

1 
47r 

= - - 1g( - p 'x' + iOxo) 

where p = eYK, y = - r'(1) and K is an arbitrary constant. 
D'-'(x) is related to D'"(x) by 

D'-'(x)  = -D'+'( -x) = - [D'+'(x)]* ('4.2) 

iA.3) iD (x) = D'-'(x) + D'+'(x) 

and, of course, 

UD'*'(X) = 0. (A.4) 

Now we introduce 6 ( + ) ( x )  

We define 6 ( - ) ( x )  in such a way that relations (A.2)-(A.4) with tildes hold. Some basic 
formulae are (Nakanishi 1977b) 

From (2.4) with f(x) = D'*)(x), together with (2.8), we see that (A.6) and (A.7) imply 

J-m 
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From the explicit expressions for D'*'(x) and fi""(x) we obtain 

-'*I 1 x 1  alD'*!(x) = a"D (x) = f -- 7 - 7 0 .  
21r x Flux 

We have 

i f dx' aoD'*'(x) = f dxl d1.d'*'(x) = -; 
m 03 

(A.10) 

(A.11) 

(A.12) 
J-m J-m L 

but dx' aod'*'ix) does not exist because D(*)(x) is logarithmically divergent. 
The function D'*)(x) is not invariant under Lorentz transformation, whereas the 

function D'*'(x) is not invariant under the scale transformation. Under the Lorentz 
transformation 

~ (cosh 
s inhx coshx 

d'*'(x) transforms as 

d"'(A-'x) = f i ' * ) ( x )  f ,y/277. 

Under the scale transformation x +Ax, D'*'(x) transforms as 

(A.13) 

D'*'(Ax) = D'*'(x) ?In A/2lr. (A.14) 

Combining the equations (A.lO) and (A.11) we have the following relations 

(xoao-xlal)D(*'(x) = (XO& -x1ao)P(x) = F 1/2;lr 

(Xdl -x1ao)D'*)(xj = (xoao-xlal)d"*)(x) = 0. 

(A. 15) 

(A.16) 
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